짬뽕얼큰하게의 맨땅에 헤딩 :: '2025/02 글 목록 (5 Page)

Leetcode Problem:

Summary

  • The problem requires to recover a binary tree from a contaminated tree where all node values are -1 and then find if a target value exists in the recovered tree.

Approach

  • The solution uses a helper function traversal to populate a boolean array s with the original values of the binary tree
  • The traversal function is a depth-first search that assigns the original values to the nodes and marks them in the s array
  • The find function simply checks the s array for the target value.

Complexity

  • O(n), where n is the number of nodes in the tree, because each node is visited once during the traversal.

Explanation

  • The solution uses a boolean array s of size 2000001 to keep track of the original values of the nodes
  • The traversal function is a recursive depth-first search that assigns the original values to the nodes and marks them in the s array
  • The find function simply checks the s array for the target value
  • This approach ensures that the original values are recovered and can be used to check for the existence of a target value.

Solution Code:


/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class FindElements {
public:
    bool s[2000001] = {0};
    void traversal(TreeNode* root, int val){
        if(root == nullptr) return;
        root->val = val;
        s[val] = true;
        traversal(root->left, val*2 + 1);
        traversal(root->right, val*2 + 2);
    }
    FindElements(TreeNode* root) {
        traversal(root, 0);
    }
    
    bool find(int target) {
        return s[target];
    }
};

/**
 * Your FindElements object will be instantiated and called as such:
 * FindElements* obj = new FindElements(root);
 * bool param_1 = obj->find(target);
 */
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • Given an integer array, remove a subarray such that the remaining elements are non-decreasing and return the length of the shortest subarray to remove.

Approach

  • The approach used is to find the first decreasing pair in the array and then try to find the longest subarray that can be removed without breaking the non-decreasing sequence
  • If the first element is greater than or equal to the last element, we can return the length of the subarray that can be removed from the beginning
  • Otherwise, we need to try to find the longest subarray that can be removed from the end.

Complexity

  • O(n) where n is the size of the array

Explanation

  • The solution starts by finding the first decreasing pair in the array
  • If no such pair is found, it means the array is already non-decreasing, so we return 0
  • Otherwise, we find the longest subarray that can be removed without breaking the non-decreasing sequence
  • We do this by trying to find the longest subarray that can be removed from the end of the array
  • If the first element is greater than or equal to the last element, we can return the length of the subarray that can be removed from the beginning
  • Otherwise, we need to try to find the longest subarray that can be removed from the end
  • We use two pointers, left and right, to find the longest subarray that can be removed
  • We start by trying to find the longest subarray that can be removed from the end of the array
  • If the current element is greater than or equal to the previous element, we move the right pointer to the previous element
  • If the current element is less than the previous element, we move the left pointer to the previous element
  • We repeat this process until we find the longest subarray that can be removed without breaking the non-decreasing sequence
  • We then return the length of the subarray that can be removed.

Solution Code:


class Solution {
public:
    int findLengthOfShortestSubarray(vector& arr) {
        int left;
        for(left = 0 ; left < arr.size() - 1; left++){
            if(arr[left] > arr[left+1]){
                break;
            }
        }
        if (left == arr.size() - 1) return 0;
        
        int right;
        for(right = arr.size() - 1; right > 0; right--){
            if(arr[right-1] > arr[right]){
                break;
            }
        }
        if (arr[left] <= arr[right]) return right - left -1;
        int t = arr.size() - left -1;
        int ans = min(t, right);
        int i = 0;
        while (i <= left && right < arr.size()){
            if (arr[i] <= arr[right]){
                ans = min(ans, right - i - 1);
            }

            if (i+1 <= left && arr[i+1] <= arr[right]){
                i++;
            } else{
                right++;
            }
        }
        return ans;
    }
};
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • This problem requires finding the minimum possible maximum number of products given to any store when distributing products to specialty retail stores.

Approach

  • The solution uses a binary search approach to find the minimum possible maximum number of products
  • It starts by initializing two pointers, one at 1 and one at 100000, and then iteratively calculates the midpoint
  • It then checks if the maximum number of products that can be given to each store is less than or equal to the total number of stores
  • If it is, it updates the right pointer and the answer; otherwise, it updates the left pointer.

Complexity

  • O(m log max(quantities[i]))

Explanation

  • The solution works by using a binary search approach to find the minimum possible maximum number of products
  • It starts by initializing two pointers, one at 1 and one at 100000, and then iteratively calculates the midpoint
  • It then checks if the maximum number of products that can be given to each store is less than or equal to the total number of stores
  • If it is, it updates the right pointer and the answer; otherwise, it updates the left pointer
  • This approach ensures that the solution is efficient and can handle large inputs.

Solution Code:


class Solution {
public:
    int minimizedMaximum(int n, vector& quantities) {
        int ans = quantities[0];
        int l = 1;
        int r = 100000;
        while(l <= r){
            int mid = (l + r) / 2;
            int cnt = 0;
            for(int i = 0 ; i < quantities.size(); i++){
                cnt += quantities[i] / mid;
                if (quantities[i] % mid != 0){
                    cnt++;
                }
            }
            if (cnt <= n){
                r = mid - 1;
                ans = mid;
            } else {
                l = mid + 1;
            }
        }
        return ans;
    }
};
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • The problem is to count the number of fair pairs in a given array of integers within a specified range.

Approach

  • The solution uses a two-pointer technique to find the range of possible values for each pair, and then calculates the number of fair pairs by summing up the counts of pairs that fall within the specified range.

Complexity

  • O(n log n + n log n) = O(n log n)

Explanation

  • The solution first sorts the input array
  • Then, for each element in the array, it uses two pointers (low and up) to find the range of possible values for the other element in the pair
  • The low pointer is used to find the smallest possible value for the other element, and the up pointer is used to find the largest possible value
  • The solution then calculates the number of fair pairs by summing up the counts of pairs that fall within the specified range.

Solution Code:


class Solution {
public:
    long long countFairPairs(vector& nums, int lower, int upper) {
        sort(nums.begin(), nums.end());
        
        long long ans = 0;
        for(int i = 0 ; i < nums.size(); i++){
            int l = i+1;
            int r = nums.size() - 1;
            int low = 123456789;
            while(l <= r){
                int mid = (l + r ) / 2;
                if(nums[mid] + nums[i] >= lower){
                    r = mid - 1;
                    low = mid;
                }else{
                    l = mid + 1;
                }
            }
            l = i + 1;
            r = nums.size() - 1;
            int up = 0;
            while(l <= r){
                int mid = (l + r ) / 2;
                if(nums[mid] + nums[i] <= upper){
                    l = mid + 1;
                    up = mid;
                }else{
                    r = mid - 1;
                }
            }
            if(low<=up){
                ans += up - low + 1;
            }
        }
        return ans;
    }
};
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • Given a 2D integer array of item prices and beauties, and a 0-indexed integer array of queries, determine the maximum beauty of an item whose price is less than or equal to each query.

Approach

  • The solution uses a modified merge sort algorithm to sort the items based on their prices
  • Then, it iterates over the sorted items and updates the beauty of each item if its price is less than the current query
  • Finally, it uses a binary search approach to find the maximum beauty for each query.

Complexity

  • O(n log n + m log n), where n is the number of items and m is the number of queries.

Explanation

  • The modified merge sort algorithm sorts the items based on their prices and then updates the beauty of each item if its price is less than the current query
  • This is done to ensure that the items are sorted in ascending order of their prices
  • The binary search approach is used to find the maximum beauty for each query by finding the first item whose price is greater than the query and returning its beauty.

Solution Code:


struct _item{
    int price;
    int beauty;
};

class Solution {
public:
    _item arr[100001];
    _item tmp[100001];
    void merge(int l, int mid, int r){
        int i = l;
        int j = mid + 1;
        int cur = l;
        while(i <= mid & j <= r){
            if(arr[i].price < arr[j].price){
                tmp[cur++] = arr[i++];
            } else if (arr[i].price > arr[j].price){
                tmp[cur++] = arr[j++];
            } else{
                if(arr[i].beauty >= arr[j].beauty){
                    tmp[cur++] = arr[i++];
                } else {
                    tmp[cur++] = arr[j++];
                }
            }
        }
        while(i<= mid){
            tmp[cur++] = arr[i++];
        }
        for(i = l; i < cur; i++){
            arr[i] = tmp[i];
        }
    }
    void merge_sort(int l, int r){
        if(l >= r) return;
        int mid = (l + r) / 2;
        merge_sort(l, mid);
        merge_sort(mid+1, r);
        merge(l, mid, r);
    }
    vector maximumBeauty(vector>& items, vector& queries) {
        for(int i = 0 ; i < items.size(); i++){
            arr[i].price = items[i][0];
            arr[i].beauty = items[i][1];
        }
        merge_sort(0, items.size() - 1);
        int maxBeauty = arr[0].beauty;
        for(int i = 1 ; i < items.size(); i++){
            if(arr[i].beauty < maxBeauty){
                arr[i].beauty = maxBeauty;
            } else {
                maxBeauty = arr[i].beauty;
            }
        }
        vector ansV;
        for(int i = 0 ; i < queries.size(); i++){
            int l = 0;
            int r = items.size() - 1;
            int ans = 0;
            while(l <= r){
                int mid = (l + r ) / 2;
                if (arr[mid].price > queries[i]){
                    r = mid - 1;
                    continue;
                }
                ans = arr[mid].beauty;
                l = mid + 1;
            }
            ansV.push_back(ans);
        }
        return ansV;
    }
};

'알고리즘' 카테고리의 다른 글

Minimized Maximum of Products Distributed to Any Store  (0) 2025.02.21
Count the Number of Fair Pairs  (0) 2025.02.21
Prime Subtraction Operation  (0) 2025.02.21
Shortest Subarray With OR at Least K II  (0) 2025.02.21
Minimum Array End  (0) 2025.02.21
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • Given a 0-indexed integer array, determine if it can be made a strictly increasing array by subtracting prime numbers from its elements.

Approach

  • The approach involves first creating a boolean array to store the primality of numbers from 2 to 1000
  • Then, for each number in the input array, we try to subtract the smallest prime that is less than the number from it
  • If the resulting number is less than the previous number, we return false
  • Otherwise, we continue with the next number
  • If we can successfully make the array strictly increasing, we return true.

Complexity

  • O(n * sqrt(1000))

Explanation

  • The time complexity is O(n * sqrt(1000)) because for each number in the input array, we try to subtract the smallest prime that is less than the number from it
  • The outer loop runs n times, and the inner loop runs up to sqrt(1000) times
  • The space complexity is O(1000) because we need to store the primality of numbers from 2 to 1000 in the boolean array.

Solution Code:


class Solution {
public:
    bool isPrime[1001];
    bool primeSubOperation(vector& nums) {
        for(int i = 2 ; i <= 1000; i++){
            isPrime[i] = true;
        }
        for(int i = 2; i*i <= 1000; i++){
            for(int j = 2; i*j <= 1000; j++){
                isPrime[i*j] = false;
            }
        }
        for(int i = nums[0] - 1; i >= 2; i--){
            if(isPrime[i]){
                nums[0] -= i;
                break;
            }
        }
        for(int i = 1; i < nums.size(); i++){
            for(int j = nums[i] - 1; j >= 2; j--){
                if(isPrime[j] && nums[i-1] < (nums[i] - j)){
                    nums[i] -= j;
                    break;
                }
            }
            if(nums[i-1] >= nums[i]) return false;
        }

        return true;
    }
};

'알고리즘' 카테고리의 다른 글

Count the Number of Fair Pairs  (0) 2025.02.21
Most Beautiful Item for Each Query  (0) 2025.02.21
Shortest Subarray With OR at Least K II  (0) 2025.02.21
Minimum Array End  (0) 2025.02.21
Maximum XOR for Each Query  (0) 2025.02.21
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • The problem requires finding the length of the shortest special subarray in the given array of non-negative integers and an integer k
  • A special subarray is defined as an array where the bitwise OR of all its elements is at least k.

Approach

  • The approach used is to use a bit manipulation technique to efficiently calculate the bitwise OR of all subarrays
  • A custom _bit struct is created to store the count of 1s in the binary representation of each number
  • The add and sub methods are used to update the count of 1s in the _bit struct
  • The getNum method is used to calculate the bitwise OR of all numbers in the subarray
  • The minimumSubarrayLength function uses two pointers to traverse the array and update the _bit struct accordingly
  • If the bitwise OR of the subarray is greater than or equal to k, the length of the subarray is updated
  • The function returns the length of the shortest special subarray or -1 if no special subarray exists.

Complexity

  • O(n log n) due to the getNum method, where n is the size of the input array
  • The add and sub methods are O(log n) and are called in a loop, so the overall time complexity is O(n log n)
  • The space complexity is O(1) as the _bit struct only uses a constant amount of space.

Explanation

  • The solution code first creates a custom _bit struct to store the count of 1s in the binary representation of each number
  • The add and sub methods are used to update the count of 1s in the _bit struct
  • The getNum method is used to calculate the bitwise OR of all numbers in the subarray
  • The minimumSubarrayLength function uses two pointers to traverse the array and update the _bit struct accordingly
  • If the bitwise OR of the subarray is greater than or equal to k, the length of the subarray is updated
  • The function returns the length of the shortest special subarray or -1 if no special subarray exists.

Solution Code:


struct _bit{
    int cnt[32] = {0};
    void add(int num){
        int c = 0;
        while(num){
            if (num%2){
                cnt[c]++;
            }
            num /= 2;
            c++;
        }
    }
    void sub(int num){
        int c = 0;
        while(num){
            if (num %2){
                cnt[c]--;
            }
            num /= 2;
            c++;
        }
    }
    int getNum(){
        long long pow = 1;
        long long num = 0;
        for(int i = 0 ; i < 31; i++){
            int x = 0;
            if(cnt[i] > 0){
                x = 1;
            }
            num += pow * x;
            pow *= 2;
        }
        return num;
    }
};


class Solution {
public:
    _bit b;
    int minimumSubarrayLength(vector& nums, int k) {
        int res = nums.size()+1;
        
        int l = 0;
        int r = 0;
        if (k == 0 ) return 1;
        while(r < nums.size() && l <= r){
            int num = b.getNum();
            if(num >= k){
                res = min(res, r - l);
                b.sub(nums[l++]);
            } else {
                b.add(nums[r++]);
            }
        }
        int num = b.getNum();
        if(num >= k){
            res = min(res, r - l);
        } 
        while(l < nums.size()){
            num = b.getNum();
            if(num >= k){
                res = min(res, r - l);
                b.sub(nums[l++]);
            } else {
                break;
            }
        }
        
        if (res == nums.size() + 1) return -1;
        return res;
    }
};

'알고리즘' 카테고리의 다른 글

Most Beautiful Item for Each Query  (0) 2025.02.21
Prime Subtraction Operation  (0) 2025.02.21
Minimum Array End  (0) 2025.02.21
Maximum XOR for Each Query  (0) 2025.02.21
Largest Combination With Bitwise AND Greater Than Zero  (0) 2025.02.21
블로그 이미지

짬뽕얼큰하게

,

Minimum Array End

알고리즘 2025. 2. 21. 08:47

Leetcode Problem:

Summary

  • Construct an array of positive integers where the result of the bitwise AND operation between all elements is given, and the array is strictly increasing.

Approach

  • The approach is to create two arrays, one for the given x and one for the given n
  • We then iterate through the arrays and construct the result array
  • If the current bit in x is 1, we add 1 to the result array
  • If the current bit in x is 0, we add the next available number from the array n
  • We then calculate the final result by summing up the product of each number in the result array and its corresponding power of 2.

Complexity

  • O(log n + log x) = O(log (max(n, x)))

Explanation

  • The solution iterates through the arrays x and n, constructing the result array
  • It uses two arrays to store the current bit in x and the next available number from n
  • The time complexity is O(log (max(n, x))) because we iterate through the arrays x and n, and each iteration takes constant time
  • The space complexity is also O(log (max(n, x))) because we store the result array and the two input arrays.

Solution Code:


class Solution {
public:
    vector xv, nv, ansv;
    long long minEnd(int n, int x) {
        n--;
        while(n){
            nv.push_back(n%2);
            n /= 2;
        }
        while(x){
            xv.push_back(x%2);
            x /= 2;
        }
        int nIdx = 0;
        for(int xIdx = 0; xIdx < xv.size(); xIdx++){
            if(xv[xIdx] == 1){
                ansv.push_back(1);
            } else{
                if(nIdx < nv.size()){
                    ansv.push_back(nv[nIdx++]);
                } else{
                    ansv.push_back(0);
                }
            }
        }
        while(nIdx < nv.size()){
            ansv.push_back(nv[nIdx++]);
        }
        long long ans = 0;
        long long pow = 1;
        for(int i = 0 ; i < ansv.size(); i++){
            ans += pow*ansv[i];
            pow *= 2;
        }

        return ans;
    }
};

'알고리즘' 카테고리의 다른 글

Prime Subtraction Operation  (0) 2025.02.21
Shortest Subarray With OR at Least K II  (0) 2025.02.21
Maximum XOR for Each Query  (0) 2025.02.21
Largest Combination With Bitwise AND Greater Than Zero  (0) 2025.02.21
Find if Array Can Be Sorted  (0) 2025.02.21
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • Given a sorted array of non-negative integers and an integer maximumBit, find the maximum XOR value for each query and return the answers.

Approach

  • The solution uses the XOR operation to find the maximum XOR value for each query
  • It initializes the accumulator with the XOR of all numbers in the array, then iterates through the array from right to left, updating the accumulator with the XOR of the current number and the maximum possible XOR value
  • The result is the XOR of the accumulator and the maximum possible XOR value, which is the maximum XOR value for the current query.

Complexity

  • O(n) where n is the number of elements in the array, as it only requires a single pass through the array.

Explanation

  • The solution starts by initializing the accumulator with the XOR of all numbers in the array
  • This is done to ensure that the maximum XOR value for the first query is correctly calculated
  • Then, it iterates through the array from right to left, updating the accumulator with the XOR of the current number and the maximum possible XOR value
  • The result is the XOR of the accumulator and the maximum possible XOR value, which is the maximum XOR value for the current query
  • This process is repeated for each query, and the results are stored in the result vector.

Solution Code:


class Solution {
public:
    vector getMaximumXor(vector& nums, int maximumBit) {
        int max_num = (1 << maximumBit) - 1;
        vector res;
        int acc = 0;
        for(int i = 0 ; i < nums.size(); i++) {
            acc ^= nums[i];
        }

        for(int i = nums.size()-1; i>= 0; i--) {
            res.push_back(acc ^ max_num);
            acc ^= nums[i];
        }
        return res;
    }
};

'알고리즘' 카테고리의 다른 글

Shortest Subarray With OR at Least K II  (0) 2025.02.21
Minimum Array End  (0) 2025.02.21
Largest Combination With Bitwise AND Greater Than Zero  (0) 2025.02.21
Find if Array Can Be Sorted  (0) 2025.02.21
Find Unique Binary String  (0) 2025.02.20
블로그 이미지

짬뽕얼큰하게

,

Leetcode Problem:

Summary

  • Find the size of the largest combination of elements in the candidates array with a bitwise AND greater than 0.

Approach

  • The approach used is to generate all possible combinations of elements in the candidates array by iterating over all possible bitmasks (0-24)
  • For each bitmask, count the number of elements in the candidates array that have the corresponding bit set
  • The maximum count is the size of the largest combination with a bitwise AND greater than 0.

Complexity

  • O(n * 24) where n is the number of elements in the candidates array

Explanation

  • The solution iterates over all possible bitmasks (0-24) and for each bitmask, it counts the number of elements in the candidates array that have the corresponding bit set
  • This is done by using a bitwise AND operation between the bitmask and each element in the candidates array
  • If the result is greater than 0, it means the bit is set in the element, so the count is incremented
  • The maximum count is updated if a larger count is found
  • The solution returns the maximum count as the size of the largest combination with a bitwise AND greater than 0.

Solution Code:


class Solution {
public:
    int largestCombination(vector& candidates) {
        int maxCnt = 0;
        for(int i = 0 ; i < 24; i++){
            int mask = 1 << i;
            int cnt = 0;
            for(int j = 0 ; j < candidates.size(); j++){
                if((candidates[j] & mask) > 0){
                    cnt++;
                }
            }
            maxCnt = max(maxCnt, cnt);
        }
        return maxCnt;
    }
};

'알고리즘' 카테고리의 다른 글

Minimum Array End  (0) 2025.02.21
Maximum XOR for Each Query  (0) 2025.02.21
Find if Array Can Be Sorted  (0) 2025.02.21
Find Unique Binary String  (0) 2025.02.20
Minimum Number of Changes to Make Binary String Beautiful  (0) 2025.02.20
블로그 이미지

짬뽕얼큰하게

,