Leetcode Problem:
Summary
- The problem requires finding the closest integer (not including itself) which is a palindrome
- If there is a tie, return the smaller one.
Approach
- The approach is to first convert the input string into an integer using the strToInt function
- Then, find the closest palindrome by checking the numbers before and after the middle digit
- If the length of the string is odd, consider the numbers with one digit less
- If the length is even, add a 9 to the first half of the number to make it a palindrome
- Then, calculate the absolute difference between each of these numbers and the input number, and return the number with the minimum difference.
Complexity
- O(n), where n is the length of the input string
- This is because the time complexity is dominated by the loop that checks the numbers before and after the middle digit.
Explain
- The code first converts the input string into an integer using the strToInt function
- Then, it calculates the middle index of the string
- If the length of the string is odd, it considers the numbers with one digit less by removing the middle digit
- If the length is even, it adds a 9 to the first half of the number to make it a palindrome
- Then, it calculates the absolute difference between each of these numbers and the input number, and returns the number with the minimum difference
- The time complexity of the code is O(n), where n is the length of the input string, because the time complexity is dominated by the loop that checks the numbers before and after the middle digit.
Solution Code:
class Solution {
public:
long long strToInt(string n){
long long pow = 1;
long long res = 0;
for(int i = n.size() -1 ; i >= 0; i--){
res += pow * (n[i] - '0');
pow *=10;
}
return res;
}
string nearestPalindromic(string n) {
long long N = strToInt(n);
int len = n.size();
if (len == 1){
return to_string(N -1);
} else if (n.compare("10") == 0 || n.compare("11") == 0){
return "9";
}
int mid = (len + 1) / 2;
string preNum = n.substr(0,mid);
string postNum = n.substr(mid);
string preCmpNum = string(preNum);
if (len %2){
preCmpNum = preCmpNum.substr(0, mid-1);
}
reverse(preCmpNum.begin(), preCmpNum.end());
long long pre1 = strToInt(preNum) - 1;
long long pre2 = strToInt(preNum);
long long pre3 = strToInt(preNum) + 1;
string preStr1 = to_string(pre1);
string preStr2 = to_string(pre2);
string preStr3 = to_string(pre3);
string postStr1, postStr2, postStr3;
bool offset1 = false, offset2 = false, offset3 = false;
if (len%2){
offset1 = !offset1;
offset2 = !offset2;
offset3 = !offset3;
}
if (preStr1.size() != preStr2.size()){
offset1 = !offset1;
if(len %2 == 0){
preStr1 += "9";
}
}
if (preStr2.size() != preStr3.size()){
offset3 = !offset3;
if (len %2)
preStr3 = preStr3.substr(0, preStr3.size()-1);
}
postStr1 = preStr1.substr(0, preStr1.size() - offset1);
postStr2 = preStr2.substr(0, preStr2.size() - offset2);
postStr3 = preStr3.substr(0, preStr3.size() - offset3);
reverse(postStr1.begin(), postStr1.end());
reverse(postStr2.begin(), postStr2.end());
reverse(postStr3.begin(), postStr3.end());
string number[3];
long long diff[3];
number[0] = preStr1 + postStr1;
number[1] = preStr2 + postStr2;
number[2] = preStr3 + postStr3;
diff[0] = abs(strToInt(number[0]) - N);
diff[1] = abs(strToInt(number[1]) - N);
diff[2] = abs(strToInt(number[2]) - N);
if (diff[1] == 0) return diff[0] <= diff[2] ? number[0] : number[2];
int minIdx = 0;
long long minDiff = diff[0];
for(int i = 1; i < 3; i++){
if (minDiff > diff[i]){
minDiff = diff[i];
minIdx = i;
}
}
return number[minIdx];
}
};