Leetcode Problem:
Summary
- Minimum Total Distance for Robots to Reach Factories
Approach
- Dynamic Programming with Memoization
Complexity
Explanation
- This solution sorts the robots and factories by position, then uses dynamic programming with memoization to calculate the minimum total distance
- The `calculateMinDistance` function recursively tries two options: assigning the current robot to the current factory and skipping the current factory for the current robot
- The minimum of these two options is stored in the memo table to avoid repeated calculations.
Solution Code:
class Solution {
public:
long long minimumTotalDistance(vector& robot,
vector>& factory) {
// Sort robots and factories by position
sort(robot.begin(), robot.end());
sort(factory.begin(), factory.end());
// Flatten factory positions according to their capacities
vector factoryPositions;
for (auto& f : factory)
for (int i = 0; i < f[1]; i++) factoryPositions.push_back(f[0]);
int robotCount = robot.size(), factoryCount = factoryPositions.size();
vector> memo(robotCount,
vector(factoryCount, -1));
// Recursively calculate minimum total distance with memoization
return calculateMinDistance(0, 0, robot, factoryPositions, memo);
}
long long calculateMinDistance(int robotIdx, int factoryIdx,
vector& robot,
vector& factoryPositions,
vector>& memo) {
// All robots assigned
if (robotIdx == robot.size()) return 0;
// No factories left to assign
if (factoryIdx == factoryPositions.size()) return 1e12;
// Check memo
if (memo[robotIdx][factoryIdx] != -1) return memo[robotIdx][factoryIdx];
// Option 1: Assign current robot to current factory
long long assign = abs(robot[robotIdx] - factoryPositions[factoryIdx]) +
calculateMinDistance(robotIdx + 1, factoryIdx + 1,
robot, factoryPositions, memo);
// Option 2: Skip current factory for the current robot
long long skip = calculateMinDistance(robotIdx, factoryIdx + 1, robot,
factoryPositions, memo);
return memo[robotIdx][factoryIdx] =
min(assign, skip); // Take the minimum and store in memo
}
};