Leetcode Problem:
Summary
- Given an integer array nums, return the minimum number of elements to remove to make nums a mountain array.
Approach
- Dynamic programming approach to solve the problem
- Two arrays dp1 and dp2 are used to store the maximum number of elements that can be removed to make the left and right parts of the array a mountain array respectively.
Complexity
- O(n^2) where n is the size of the input array nums
Explanation
- The dp1 array is used to store the maximum number of elements that can be removed to make the left part of the array a mountain array
- The dp1 array is filled in a bottom-up manner
- For each element in the array, the maximum number of elements that can be removed to make the left part of the array a mountain array is updated
- The dp2 array is used to store the maximum number of elements that can be removed to make the right part of the array a mountain array
- The dp2 array is also filled in a bottom-up manner
- For each element in the array, the maximum number of elements that can be removed to make the right part of the array a mountain array is updated
- Finally, the minimum number of elements that need to be removed to make the entire array a mountain array is calculated by iterating over the array and checking if the current element is greater than or equal to the previous element
- If it is, then the minimum number of elements that need to be removed is updated.
Solution Code:
class Solution {
public:
int dp1[1001];
int dp2[1001];
int minimumMountainRemovals(vector& nums) {
int N = nums.size();
dp1[N - 1] = 1;
for(int i = N-2; i>= 0; i--){
dp1[i] = 1;
for(int j = i + 1; j < N; j++){
if(nums[j]< nums[i]){
dp1[i] = max(dp1[i], dp1[j] + 1);
}
}
}
dp2[0] = 1;
for(int i = 1 ; i < nums.size(); i++){
dp2[i] = 1;
for(int j = i -1; j >= 0; j--){
if(nums[j]< nums[i]){
dp2[i] = max(dp2[i], dp2[j] + 1);
}
}
}
int res = 0;
for(int i = 1 ; i< N-1; i++){
if(nums[i-1] >= nums[i]) continue;
int j_max = 0;
bool success = false;
for(int j = i + 1; j < N; j++){
if(nums[i] <= nums[j]){
continue;
}
success = true;
j_max = max(j_max, dp1[j]);
}
if (success)
res = max(res, j_max + dp2[i]);
}
return N -res;
}
};
class Solution {
public:
int dp1[1001];
int dp2[1001];
int minimumMountainRemovals(vector& nums) {
int N = nums.size();
dp1[N - 1] = 1;
for(int i = N-2; i>= 0; i--){
dp1[i] = 1;
for(int j = i + 1; j < N; j++){
if(nums[j]< nums[i]){
dp1[i] = max(dp1[i], dp1[j] + 1);
}
}
}
dp2[0] = 1;
for(int i = 1 ; i < nums.size(); i++){
dp2[i] = 1;
for(int j = i -1; j >= 0; j--){
if(nums[j]< nums[i]){
dp2[i] = max(dp2[i], dp2[j] + 1);
}
}
}
int res = 0;
for(int i = 1 ; i< N-1; i++){
if(nums[i-1] >= nums[i]) continue;
int j_max = 0;
bool success = false;
for(int j = i + 1; j < N; j++){
if(nums[i] <= nums[j]){
continue;
}
success = true;
j_max = max(j_max, dp1[j]);
}
if (success)
res = max(res, j_max + dp2[i]);
}
return N -res;
}
};
'알고리즘' 카테고리의 다른 글
Minimum Total Distance Traveled (0) | 2025.02.20 |
---|---|
The k-th Lexicographical String of All Happy Strings of Length n (0) | 2025.02.19 |
Maximum Number of Moves in a Grid (0) | 2025.02.19 |
Longest Square Streak in an Array (0) | 2025.02.19 |
Count Square Submatrices with All Ones (0) | 2025.02.19 |