Leetcode Problem:
Summary
- Given a 2D array of row conditions and column conditions, build a k x k matrix that contains each number from 1 to k exactly once and satisfies the conditions.
Approach
- The solution uses a depth-first search (DFS) approach to find a Hamiltonian path in the graph
- It first constructs two graphs, one for row conditions and one for column conditions
- Then, it checks if there is a cycle in either graph using DFS
- If there is a cycle, it returns an empty matrix
- Otherwise, it uses another DFS to find a Hamiltonian path in the graph and constructs the matrix based on the path.
Complexity
- O(k * m * n * k) where m and n are the number of row conditions and column conditions respectively
Explain
- The solution starts by constructing two graphs, one for row conditions and one for column conditions
- It then checks if there is a cycle in either graph using DFS
- If there is a cycle, it returns an empty matrix
- Otherwise, it uses another DFS to find a Hamiltonian path in the graph and constructs the matrix based on the path
- The Hamiltonian path is used to ensure that each number from 1 to k is used exactly once in the matrix and that the row and column conditions are satisfied.
Solution Code:
class Solution {
public:
bool traversalCycle(int cur, vector> graph, int color[]){
color[cur] = 1;
for(int i = 0 ; i < graph[cur].size(); i++){
int next = graph[cur][i];
if (color[next] == 0 && traversalCycle(next, graph, color)){
return true;
} else if (color[next] == 1){
return true;
}
}
color[cur] = 2;
return false;
}
bool findCycle(int k, vector> &graph){
int *color = new int[k];
for(int i = 0 ; i < k; i++){
color[i] = 0;
}
for(int i = 0 ; i < k ;i++){
if (color[i] != 0) continue;
if (traversalCycle(i, graph, color)){
return true;
}
}
return false;
}
void traversalAnswer(int cur, vector> &graph, vector &ans, bool visited[]){
if(visited[cur]) return;
visited[cur] = true;
for(int i = 0 ; i < graph[cur].size(); i++){
int next = graph[cur][i];
traversalAnswer(next, graph, ans, visited);
}
ans.push_back(cur);
}
void getAnswer(int k, vector> &graph, vector &ans){
bool *visited = new bool[k];
for(int i = 0 ; i < k; i++){
visited[i] = false;
}
for(int i = 0; i < k; i++){
if (visited[i]) continue;
traversalAnswer(i, graph, ans, visited);
}
reverse(ans.begin(), ans.end());
}
vector> buildMatrix(int k, vector>& rowConditions, vector>& colConditions) {
vector> graph1(k);
vector> graph2(k);
for(int i = 0 ; i < rowConditions.size(); i++){
int a = rowConditions[i][0];
int b = rowConditions[i][1];
graph1[a - 1].push_back(b - 1);
}
for(int i = 0 ; i < colConditions.size(); i++){
int a = colConditions[i][0];
int b = colConditions[i][1];
graph2[a - 1].push_back(b - 1);
}
if (findCycle(k, graph1) || findCycle(k, graph2)){
return {};
}
vector ans1, ans2;
getAnswer(k, graph1, ans1);
getAnswer(k ,graph2, ans2);
vector> ans;
map m;
for(int i = 0 ; i < k; i++){
m[ans2[i]] = i;
ans.push_back(vector());
for(int j = 0 ; j < k; j++){
ans[i].push_back(0);
}
}
for(int i = 0 ; i < k; i++){
ans[i][m[ans1[i]]] = ans1[i] + 1;
}
return ans;
}
};