Leetcode Problem:
Summary
- Find two prime numbers within a given range with the minimum difference.
Approach
- Use the Sieve of Eratosthenes algorithm to generate prime numbers, then iterate through the range to find the pair with the minimum difference.
Complexity
- O(n log log n) due to the Sieve of Eratosthenes algorithm, where n is the upper bound of the range.
Explanation
- The Sieve of Eratosthenes algorithm is used to generate prime numbers up to the given upper bound
- Then, iterate through the range to find the pair of prime numbers with the minimum difference
- If no such pair exists, return [-1, -1].
Solution Code:
class Solution {
public:
bool isPrime[1000001] = {false};
vector closestPrimes(int left, int right) {
for(int i = 2; i <= right; i++){
isPrime[i] = true;
}
for(int i = 2; i*i <= right; i++){
if(!isPrime[i]){
continue;
}
for(int j = i *2; j <= right; j += i){
isPrime[j] = false;
}
}
vector ans;
int beforePrime = 0;
for(int i = left; i <= right; i++){
if(!isPrime[i]){
continue;
}
if(ans.size() < 2){
ans.push_back(i);
beforePrime = i;
continue;
}
else{
if((ans[1] - ans[0]) > (i - beforePrime)){
ans[0] = beforePrime;
ans[1] = i;
}
}
beforePrime = i;
}
if(ans.size() == 2) return ans;
return {-1, -1};
}
};
class Solution {
public:
bool isPrime[1000001] = {false};
vector closestPrimes(int left, int right) {
for(int i = 2; i <= right; i++){
isPrime[i] = true;
}
for(int i = 2; i*i <= right; i++){
if(!isPrime[i]){
continue;
}
for(int j = i *2; j <= right; j += i){
isPrime[j] = false;
}
}
vector ans;
int beforePrime = 0;
for(int i = left; i <= right; i++){
if(!isPrime[i]){
continue;
}
if(ans.size() < 2){
ans.push_back(i);
beforePrime = i;
continue;
}
else{
if((ans[1] - ans[0]) > (i - beforePrime)){
ans[0] = beforePrime;
ans[1] = i;
}
}
beforePrime = i;
}
if(ans.size() == 2) return ans;
return {-1, -1};
}
};
'알고리즘' 카테고리의 다른 글
Alternating Groups II (0) | 2025.03.10 |
---|---|
Minimum Recolors to Get K Consecutive Black Blocks (0) | 2025.03.09 |
Find Missing and Repeated Values (0) | 2025.03.07 |
Count Total Number of Colored Cells (0) | 2025.03.06 |
Shortest Common Supersequence (0) | 2025.03.06 |