짬뽕얼큰하게의 맨땅에 헤딩 :: Minimum Number of Operations to Sort a Binary Tree by Level

Leetcode Problem:

Summary

  • This is a solution for the problem of finding the minimum number of operations needed to make the values at each level of a binary tree strictly increasing.

Approach

  • This solution uses a level-order traversal to store the node values at each level in a vector
  • Then it sorts the node values at each level and checks for any swaps needed to make the values strictly increasing
  • The solution keeps track of the number of swaps needed and returns the total number of swaps as the minimum number of operations.

Complexity

  • O(n log n) where n is the number of nodes in the tree, due to the sorting operation at each level.

Explanation

  • The solution first performs a level-order traversal of the tree and stores the node values at each level in a vector
  • Then it sorts the node values at each level and checks for any swaps needed to make the values strictly increasing
  • The solution keeps track of the number of swaps needed and returns the total number of swaps as the minimum number of operations.

Solution Code:


/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector equalLevelNode[100001];
    void traversal(TreeNode* root, int level){
        if(root == nullptr) return;
        equalLevelNode[level].push_back(root->val);
        traversal(root->left, level + 1);
        traversal(root->right, level + 1);
    }
    int minimumOperations(TreeNode* root) {
        traversal(root, 0);
        int ans = 0;
        for(int i = 0 ; i <= 100000; i++){
            if(equalLevelNode[i].size() == 0) break;
            unordered_map m;
            vector sorted;
            for(int j = 0 ; j < equalLevelNode[i].size(); j++){
                sorted.push_back(j);
            }
            sort(sorted.begin(), sorted.end(), [&](int a, int b){
                return equalLevelNode[i][a] < equalLevelNode[i][b];
            });
            for(int j = 0; j < sorted.size(); j++){
                m[sorted[j]] = j;
            }
            for(int j = 0; j < sorted.size(); j++){
                if(equalLevelNode[i][sorted[j]] != equalLevelNode[i][j]){
                    ans++;
                    int t = equalLevelNode[i][sorted[j]];
                    equalLevelNode[i][sorted[j]] = equalLevelNode[i][j];
                    equalLevelNode[i][j] = t;

                    sorted[m[j]] = sorted[j];
                    m[sorted[j]] = m[j];
                }
            }
        }
        return ans;
    }
};

'알고리즘' 카테고리의 다른 글

Target Sum  (0) 2025.03.03
Find Largest Value in Each Tree Row  (0) 2025.03.03
Merge Two 2D Arrays by Summing Values  (0) 2025.03.02
Apply Operations to an Array  (0) 2025.03.01
Maximum Number of K-Divisible Components  (0) 2025.03.01
블로그 이미지

짬뽕얼큰하게

,